Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nuclear pore complex components have temperature-influenced roles in plant growth and immunity.

Identifieur interne : 000096 ( Main/Exploration ); précédent : 000095; suivant : 000097

Nuclear pore complex components have temperature-influenced roles in plant growth and immunity.

Auteurs : Aiqin Zhang [République populaire de Chine, États-Unis] ; Shuai Wang [États-Unis, République populaire de Chine] ; Jitae Kim [États-Unis] ; Jiapei Yan [États-Unis] ; Xiufeng Yan [République populaire de Chine] ; Qiuying Pang [République populaire de Chine] ; Jian Hua [États-Unis]

Source :

RBID : pubmed:32022936

Abstract

Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport and are composed of approximately 30 nucleoporins (NUPs). Emerging evidence suggests that some NUP genes have specialized functions that challenge the traditional view of NPCs as structures of uniform composition. Here, we analysed the role of six outer-ring components of NPC at normal and warm growth temperatures by examining their loss-of-function mutants in Arabidopsis thaliana. All six NUP subunits, NUP85, NUP96, NUP 133, NUP 160, SEH1 and HOS1, have a non-redundant temperature-influenced function in one or more of the processes, including rosette growth, leaf architecture and intracellular immune receptor-mediated disease resistance. At the molecular level, NUP85 and NUP133 are required for mRNA export only at warm temperature and play a larger role in the localization of transcription factor at warm temperature. In addition, NUP96 and HOS1 are essential for the expression of high temperature-responsive genes, which is correlated with their larger activity in facilitating nuclear accumulation of the transcription factor PIF4 at warm temperature. Our results show that subunits of NPC have differential roles at different temperatures, suggesting the existence of temperature-influenced NPC complexes and activities.

DOI: 10.1111/pce.13741
PubMed: 32022936


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nuclear pore complex components have temperature-influenced roles in plant growth and immunity.</title>
<author>
<name sortKey="Zhang, Aiqin" sort="Zhang, Aiqin" uniqKey="Zhang A" first="Aiqin" last="Zhang">Aiqin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shuai" sort="Wang, Shuai" uniqKey="Wang S" first="Shuai" last="Wang">Shuai Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jitae" sort="Kim, Jitae" uniqKey="Kim J" first="Jitae" last="Kim">Jitae Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yan, Jiapei" sort="Yan, Jiapei" uniqKey="Yan J" first="Jiapei" last="Yan">Jiapei Yan</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yan, Xiufeng" sort="Yan, Xiufeng" uniqKey="Yan X" first="Xiufeng" last="Yan">Xiufeng Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Qiuying" sort="Pang, Qiuying" uniqKey="Pang Q" first="Qiuying" last="Pang">Qiuying Pang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Jian" sort="Hua, Jian" uniqKey="Hua J" first="Jian" last="Hua">Jian Hua</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32022936</idno>
<idno type="pmid">32022936</idno>
<idno type="doi">10.1111/pce.13741</idno>
<idno type="wicri:Area/Main/Corpus">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000225</idno>
<idno type="wicri:Area/Main/Curation">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000225</idno>
<idno type="wicri:Area/Main/Exploration">000225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nuclear pore complex components have temperature-influenced roles in plant growth and immunity.</title>
<author>
<name sortKey="Zhang, Aiqin" sort="Zhang, Aiqin" uniqKey="Zhang A" first="Aiqin" last="Zhang">Aiqin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shuai" sort="Wang, Shuai" uniqKey="Wang S" first="Shuai" last="Wang">Shuai Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jitae" sort="Kim, Jitae" uniqKey="Kim J" first="Jitae" last="Kim">Jitae Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yan, Jiapei" sort="Yan, Jiapei" uniqKey="Yan J" first="Jiapei" last="Yan">Jiapei Yan</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yan, Xiufeng" sort="Yan, Xiufeng" uniqKey="Yan X" first="Xiufeng" last="Yan">Xiufeng Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Qiuying" sort="Pang, Qiuying" uniqKey="Pang Q" first="Qiuying" last="Pang">Qiuying Pang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Jian" sort="Hua, Jian" uniqKey="Hua J" first="Jian" last="Hua">Jian Hua</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport and are composed of approximately 30 nucleoporins (NUPs). Emerging evidence suggests that some NUP genes have specialized functions that challenge the traditional view of NPCs as structures of uniform composition. Here, we analysed the role of six outer-ring components of NPC at normal and warm growth temperatures by examining their loss-of-function mutants in Arabidopsis thaliana. All six NUP subunits, NUP85, NUP96, NUP 133, NUP 160, SEH1 and HOS1, have a non-redundant temperature-influenced function in one or more of the processes, including rosette growth, leaf architecture and intracellular immune receptor-mediated disease resistance. At the molecular level, NUP85 and NUP133 are required for mRNA export only at warm temperature and play a larger role in the localization of transcription factor at warm temperature. In addition, NUP96 and HOS1 are essential for the expression of high temperature-responsive genes, which is correlated with their larger activity in facilitating nuclear accumulation of the transcription factor PIF4 at warm temperature. Our results show that subunits of NPC have differential roles at different temperatures, suggesting the existence of temperature-influenced NPC complexes and activities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32022936</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Nuclear pore complex components have temperature-influenced roles in plant growth and immunity.</ArticleTitle>
<Pagination>
<MedlinePgn>1452-1466</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13741</ELocationID>
<Abstract>
<AbstractText>Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport and are composed of approximately 30 nucleoporins (NUPs). Emerging evidence suggests that some NUP genes have specialized functions that challenge the traditional view of NPCs as structures of uniform composition. Here, we analysed the role of six outer-ring components of NPC at normal and warm growth temperatures by examining their loss-of-function mutants in Arabidopsis thaliana. All six NUP subunits, NUP85, NUP96, NUP 133, NUP 160, SEH1 and HOS1, have a non-redundant temperature-influenced function in one or more of the processes, including rosette growth, leaf architecture and intracellular immune receptor-mediated disease resistance. At the molecular level, NUP85 and NUP133 are required for mRNA export only at warm temperature and play a larger role in the localization of transcription factor at warm temperature. In addition, NUP96 and HOS1 are essential for the expression of high temperature-responsive genes, which is correlated with their larger activity in facilitating nuclear accumulation of the transcription factor PIF4 at warm temperature. Our results show that subunits of NPC have differential roles at different temperatures, suggesting the existence of temperature-influenced NPC complexes and activities.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Aiqin</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shuai</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Jitae</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Jiapei</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Xiufeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pang</LastName>
<ForeName>Qiuying</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hua</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-3777-3344</Identifier>
<AffiliationInfo>
<Affiliation>School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arabidopsis</Keyword>
<Keyword MajorTopicYN="Y">NUP</Keyword>
<Keyword MajorTopicYN="Y">SNC1</Keyword>
<Keyword MajorTopicYN="Y">growth</Keyword>
<Keyword MajorTopicYN="Y">immunity</Keyword>
<Keyword MajorTopicYN="Y">nuclear pore complex</Keyword>
<Keyword MajorTopicYN="Y">nucleocytoplasmic transport</Keyword>
<Keyword MajorTopicYN="Y">temperature</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32022936</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13741</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Alonso, J. M., & Stepanova, A. N. (2003). T-DNA mutagenesis in Arabidopsis. Methods in Molecular Biology, 236, 177-188. https://doi.org/10.1385/1-59259-413-1:177</Citation>
</Reference>
<Reference>
<Citation>Cheng, C., Gao, X. Q., Feng, B. M., Sheen, J., Shan, L. B., & He, P. (2013). Plant immune response to pathogens differs with changing temperatures. Nature Communications, 4, 2530. https://doi.org/10.1038/ncomms3530</Citation>
</Reference>
<Reference>
<Citation>Cheng, Y. T., Germain, H., Wiermer, M., Bi, D., Xu, F., Garcia, A. V., … Li, X. (2009). Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell, 21(8), 2503-2516. https://doi.org/10.1105/tpc.108.064519</Citation>
</Reference>
<Reference>
<Citation>Cheng, Z. Y., Zhang, X. M., Huang, P. H., Huang, G. W., Zhu, J. L., Chen, F. L., … Wang, X. (2020). Nup96 and HOS1 are mutually stabilized and gate CONSTANS protein level, conferring long-day photoperiodic flowering regulation in Arabidopsis. Plant Cell, 32(2), 374-391. https://doi.org/10.1105/tpc.19.00661</Citation>
</Reference>
<Reference>
<Citation>Cho, A. R., Yang, K. J., Bae, Y., Bahk, Y. Y., Kim, E., Lee, H., … Yoon, S. K. (2009). Tissue-specific expression and subcellular localization of ALADIN, the absence of which causes human triple a syndrome. Experimental & Molecular Medicine, 41(6), 381-386. https://doi.org/10.3858/emm.2009.41.6.043</Citation>
</Reference>
<Reference>
<Citation>Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 66, 487-511. https://doi.org/10.1146/annurev-arplant-050213-040012</Citation>
</Reference>
<Reference>
<Citation>D'Angelo, M. A., Gomez-Cavazos, J. S., Mei, A., Lackner, D. H., & Hetzer, M. W. (2012). A change in nuclear pore complex composition regulates cell differentiation. Developmental Cell, 22(2), 446-458. https://doi.org/10.1016/j.devcel.2011.11.021</Citation>
</Reference>
<Reference>
<Citation>D'Angelo, M. A., & Hetzer, M. W. (2008). Structure, dynamics and function of nuclear pore complexes. Trends in Cell Biology, 18(10), 456-466. https://doi.org/10.1016/j.tcb.2008.07.009</Citation>
</Reference>
<Reference>
<Citation>Dong, C. H., Hu, X., Tang, W., Zheng, X., Kim, Y. S., Lee, B. H., & Zhu, J. K. (2006). A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Molecular and Cellular Biology, 26(24), 9533-9543. https://doi.org/10.1128/mcb.01063-06</Citation>
</Reference>
<Reference>
<Citation>Elmore, J. M., Lin, Z. J., & Coaker, G. (2011). Plant NB-LRR signaling: Upstreams and downstreams. Current Opinion in Plant Biology, 14(4), 365-371. https://doi.org/10.1016/j.pbi.2011.03.011</Citation>
</Reference>
<Reference>
<Citation>Gangappa, S. N., Berriri, S., & Kumar, S. V. (2017). PIF4 coordinates Thermosensory growth and immunity in Arabidopsis. Current Biology, 27(2), 243-249. https://doi.org/10.1016/j.cub.2016.11.012</Citation>
</Reference>
<Reference>
<Citation>Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44, 489-509. https://doi.org/10.1146/annurev.phyto.44.070505.143420</Citation>
</Reference>
<Reference>
<Citation>Goldstein, A. L., Snay, C. A., Heath, C. V., & Cole, C. N. (1996). Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin Rat9p/Nup85p. Molecular Biology of the Cell, 7(6), 917-934. https://doi.org/10.1091/mbc.7.6.917</Citation>
</Reference>
<Reference>
<Citation>Gong, Z., Dong, C. H., Lee, H., Zhu, J., Xiong, L., Gong, D., … Zhu, J. K. (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell, 17(1), 256-267. https://doi.org/10.1105/tpc.104.027557</Citation>
</Reference>
<Reference>
<Citation>Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B., & Zhu, J. K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11507-11512. https://doi.org/10.1073/pnas.172399299</Citation>
</Reference>
<Reference>
<Citation>Gu, Y., Zebell, S. G., Liang, Z., Wang, S., Kang, B. H., & Dong, X. (2016). Nuclear pore Permeabilization is a convergent Signaling event in effector-triggered immunity. Cell, 166(6), 1526-1538.e1511. doi:https://doi.org/10.1016/j.cell.2016.07.042</Citation>
</Reference>
<Reference>
<Citation>Guan, T., Kehlenbach, R. H., Schirmer, E. C., Kehlenbach, A., Fan, F., Clurman, B. E., … Gerace, L. (2000). Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export. Molecular and Cellular Biology, 20(15), 5619-5630. https://doi.org/10.1128/mcb.20.15.5619-5630.2000</Citation>
</Reference>
<Reference>
<Citation>Hua, J. (2013). Modulation of plant immunity by light, circadian rhythm, and temperature. Current Opinion in Plant Biology, 16(4), 406-413. https://doi.org/10.1016/j.pbi.2013.06.017</Citation>
</Reference>
<Reference>
<Citation>Hua, J. (2014). Temperature and plant immunity. In Temperature and plant development (pp. 163-180). Hoboken, New Jersey, USA: Wiley Blackwell Publisher.</Citation>
</Reference>
<Reference>
<Citation>Huot, B., Castroverde, C. D. M., Velasquez, A. C., Hubbard, E., Pulman, J. A., Yao, J., … He, S. Y. (2017). Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nature Communications, 8(1), 1808. https://doi.org/10.1038/s41467-017-01674-2</Citation>
</Reference>
<Reference>
<Citation>Huq, E., & Quail, P. H. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal, 21(10), 2441-2450. https://doi.org/10.1093/emboj/21.10.2441</Citation>
</Reference>
<Reference>
<Citation>Jacob, Y., Mongkolsiriwatana, C., Veley, K. M., Kim, S. Y., & Michaels, S. D. (2007). The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiology, 144(3), 1383-1390. https://doi.org/10.1104/pp.107.100735</Citation>
</Reference>
<Reference>
<Citation>Jung, H. I., Yan, J., Zhai, Z., & Vatamaniuk, O. K. (2015). Gene functional analysis using protoplast transient assays. Methods in Molecular Biology, 1284, 433-452. https://doi.org/10.1007/978-1-4939-2444-8_22</Citation>
</Reference>
<Reference>
<Citation>Jung, J. H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., … Wigge, P. A. (2016). Phytochromes function as thermosensors in Arabidopsis. Science, 354(6314), 886-889. https://doi.org/10.1126/science.aaf6005</Citation>
</Reference>
<Reference>
<Citation>Kanamori, N., Madsen, L. H., Radutoiu, S., Frantescu, M., Quistgaard, E. M., Miwa, H., … Stougaard, J. (2006). A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 359-364. https://doi.org/10.1073/pnas.0508883103</Citation>
</Reference>
<Reference>
<Citation>Kim, S. H., Gao, F., Bhattacharjee, S., Adiasor, J. A., Nam, J. C., & Gassmann, W. (2010). The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRpS3. PLoS Pathogens, 6(11), e1001172. https://doi.org/10.1371/journal.ppat.1001172</Citation>
</Reference>
<Reference>
<Citation>Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P., Whitelam, G. C., & Franklin, K. A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current Biology, 19(5), 408-413. https://doi.org/10.1016/j.cub.2009.01.046</Citation>
</Reference>
<Reference>
<Citation>Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alos, E., Alvey, E., Harberd, N. P., & Wigge, P. A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 484(7393), 242-245. https://doi.org/10.1038/nature10928</Citation>
</Reference>
<Reference>
<Citation>Lazaro, A., Valverde, F., Pineiro, M., & Jarillo, J. A. (2012). The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell, 24(3), 982-999. https://doi.org/10.1105/tpc.110.081885</Citation>
</Reference>
<Reference>
<Citation>Lee, K., & Seo, P. J. (2015). The E3 ubiquitin ligase HOS1 is involved in ethylene regulation of leaf expansion in Arabidopsis. Plant Signaling & Behavior, 10(3), e1003755. https://doi.org/10.1080/15592324.2014.1003755</Citation>
</Reference>
<Reference>
<Citation>Legris, M., Klose, C., Burgie, E. S., Rojas, C. C., Neme, M., Hiltbrunner, A., … Casal, J. J. (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 354(6314), 897-900. https://doi.org/10.1126/science.aaf5656</Citation>
</Reference>
<Reference>
<Citation>Leivar, P., Tepperman, J. M., Monte, E., Calderon, R. H., Liu, T. L., & Quail, P. H. (2009). Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell, 21(11), 3535-3553. https://doi.org/10.1105/tpc.109.070672</Citation>
</Reference>
<Reference>
<Citation>Leyser, H. M., Pickett, F. B., Dharmasiri, S., & Estelle, M. (1996). Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. The Plant Journal, 10(3), 403-413. https://doi.org/10.1046/j.1365-313x.1996.10030403.x</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Pennington, B. O., & Hua, J. (2009). Multiple R-like genes are negatively regulated by BON1 and BON3 in arabidopsis. Molecular Plant-Microbe Interactions, 22(7), 840-848. https://doi.org/10.1094/mpmi-22-7-0840</Citation>
</Reference>
<Reference>
<Citation>Li, Z., Liu, M. H., Ding, Z. Z., Yan, J. P., Yu, H. Y., Pan, R. H., … Hua, J. (2019). Low temperature enhances plant immunity via salicylic acid pathway genes that are repressed by ethylene. Plant Physiol, 182(1), 626-639. https://doi.org/10.1104/pp.19.01130</Citation>
</Reference>
<Reference>
<Citation>Lorrain, S., Trevisan, M., Pradervand, S., & Fankhauser, C. (2009). Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. The Plant Journal, 60(3), 449-461. https://doi.org/10.1111/j.1365-313X.2009.03971.x</Citation>
</Reference>
<Reference>
<Citation>Lupu, F., Alves, A., Anderson, K., Doye, V., & Lacy, E. (2008). Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo. Developmental Cell, 14(6), 831-842. https://doi.org/10.1016/j.devcel.2008.03.011</Citation>
</Reference>
<Reference>
<Citation>Meier, I., & Brkljacic, J. (2009). The nuclear pore and plant development. Current Opinion in Plant Biology, 12(1), 87-95. https://doi.org/10.1016/j.pbi.2008.09.001</Citation>
</Reference>
<Reference>
<Citation>Meng, Z., Ruberti, C., Gong, Z., & Brandizzi, F. (2017). CPR5 modulates salicylic acid and the unfolded protein response to manage tradeoffs between plant growth and stress responses. The Plant Journal, 89(3), 486-501. https://doi.org/10.1111/tpj.13397</Citation>
</Reference>
<Reference>
<Citation>Nozue, K., Harmer, S. L., & Maloof, J. N. (2011). Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis. Plant Physiology, 156(1), 357-372. https://doi.org/10.1104/pp.111.172684</Citation>
</Reference>
<Reference>
<Citation>Oh, E., Zhu, J. Y., & Wang, Z. Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 14(8), 802-809. https://doi.org/10.1038/ncb2545</Citation>
</Reference>
<Reference>
<Citation>Olsson, M., Scheele, S., & Ekblom, P. (2004). Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Experimental Cell Research, 292(2), 359-370. https://doi.org/10.1016/j.yexcr.2003.09.014</Citation>
</Reference>
<Reference>
<Citation>Palma, K., Zhang, Y., & Li, X. (2005). An importin alpha homolog, MOS6, plays an important role in plant innate immunity. Current Biology, 15(12), 1129-1135. https://doi.org/10.1016/j.cub.2005.05.022</Citation>
</Reference>
<Reference>
<Citation>Parry, G. (2013). Assessing the function of the plant nuclear pore complex and the search for specificity. Journal of Experimental Botany, 64(4), 833-845. https://doi.org/10.1093/jxb/ers289</Citation>
</Reference>
<Reference>
<Citation>Parry, G. (2014). Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. Journal of Experimental Botany, 65(20), 6057-6067. https://doi.org/10.1093/jxb/eru346</Citation>
</Reference>
<Reference>
<Citation>Parry, G. (2015). The plant nuclear envelope and regulation of gene expression. Journal of Experimental Botany, 66(6), 1673-1685. https://doi.org/10.1093/jxb/erv023</Citation>
</Reference>
<Reference>
<Citation>Parry, G., Ward, S., Cernac, A., Dharmasiri, S., & Estelle, M. (2006). The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. Plant Cell, 18(7), 1590-1603. https://doi.org/10.1105/tpc.106.041566</Citation>
</Reference>
<Reference>
<Citation>Raices, M., & D'Angelo, M. A. (2012). Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nature Reviews Molecular Cell Biology, 13(11), 687-699. https://doi.org/10.1038/nrm3461</Citation>
</Reference>
<Reference>
<Citation>Richter, R., Behringer, C., Muller, I. K., & Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development, 24(18), 2093-2104. https://doi.org/10.1101/gad.594910</Citation>
</Reference>
<Reference>
<Citation>Roth, C., & Wiermer, M. (2012). Nucleoporins Nup160 and Seh1 are required for disease resistance in Arabidopsis. Plant Signaling & Behavior, 7(10), 1212-1214. https://doi.org/10.4161/psb.21426</Citation>
</Reference>
<Reference>
<Citation>Saito, K., Yoshikawa, M., Yano, K., Miwa, H., Uchida, H., Asamizu, E., … Kawaguchi, M. (2007). NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell, 19(2), 610-624. https://doi.org/10.1105/tpc.106.046938</Citation>
</Reference>
<Reference>
<Citation>Sakiyama, Y., Panatala, R., & Lim, R. Y. H. (2017). Structural dynamics of the nuclear pore complex. Seminars in Cell & Developmental Biology, 68, 27-33. https://doi.org/10.1016/j.semcdb.2017.05.021</Citation>
</Reference>
<Reference>
<Citation>Shin, J., Kim, K., Kang, H., Zulfugarov, I. S., Bae, G., Lee, C. H., … Choi, G. (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7660-7665. https://doi.org/10.1073/pnas.0812219106</Citation>
</Reference>
<Reference>
<Citation>Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., … Burgyan, J. (2003). Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. The EMBO Journal, 22(3), 633-640. https://doi.org/10.1093/emboj/cdg74</Citation>
</Reference>
<Reference>
<Citation>Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T., & Hara-Nishimura, I. (2010). Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell, 22(12), 4084-4097. https://doi.org/10.1105/tpc.110.079947</Citation>
</Reference>
<Reference>
<Citation>Terry, L. J., Shows, E. B., & Wente, S. R. (2007). Crossing the nuclear envelope: Hierarchical regulation of nucleocytoplasmic transport. Science, 318(5855), 1412-1416. https://doi.org/10.1126/science.1142204</Citation>
</Reference>
<Reference>
<Citation>Tsukaya, H. (2006). Mechanism of leaf-shape determination. Annual Review of Plant Biology, 57, 477-496. https://doi.org/10.1146/annurev.arplant.57.032905.105320</Citation>
</Reference>
<Reference>
<Citation>Tzfira, T., Tian, G. W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., … Citovsky, V. (2005). pSAT vectors: A modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Molecular Biology, 57(4), 503-516. https://doi.org/10.1007/s11103-005-0340-5</Citation>
</Reference>
<Reference>
<Citation>Wang, Y., Bao, Z., Zhu, Y., & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. Molecular Plant-Microbe Interactions, 22(5), 498-506. https://doi.org/10.1094/mpmi-22-5-0498</Citation>
</Reference>
<Reference>
<Citation>Wiermer, M., Cheng, Y. T., Imkampe, J., Li, M., Wang, D., Lipka, V., & Li, X. (2012). Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense. The Plant Journal, 70(5), 796-808. https://doi.org/10.1111/j.1365-313X.2012.04928.x</Citation>
</Reference>
<Reference>
<Citation>Wigge, P. A. (2013). Ambient temperature signalling in plants. Current Opinion in Plant Biology, 16(5), 661-666. https://doi.org/10.1016/j.pbi.2013.08.004</Citation>
</Reference>
<Reference>
<Citation>Wirthmueller, L., Roth, C., Banfield, M. J., & Wiermer, M. (2013). Hop-on hop-off: Importin-alpha-guided tours to the nucleus in innate immune signaling. Frontiers in Plant Science, 4, 149. https://doi.org/10.3389/fpls.2013.00149</Citation>
</Reference>
<Reference>
<Citation>Xu, X. M., & Meier, I. (2008). The nuclear pore comes to the fore. Trends in Plant Science, 13(1), 20-27. https://doi.org/10.1016/j.tplants.2007.12.001</Citation>
</Reference>
<Reference>
<Citation>Xu, X. M., Rose, A., Muthuswamy, S., Jeong, S. Y., Venkatakrishnan, S., Zhao, Q., & Meier, I. (2007). NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell, 19(5), 1537-1548. https://doi.org/10.1105/tpc.106.049239</Citation>
</Reference>
<Reference>
<Citation>Yang, H., Yang, S., Li, Y., & Hua, J. (2007). The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiology, 145(1), 135-146. https://doi.org/10.1104/pp.107.100800</Citation>
</Reference>
<Reference>
<Citation>Yang, S., & Hua, J. (2004). A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell, 16(4), 1060-1071. https://doi.org/10.1105/tpc.020479</Citation>
</Reference>
<Reference>
<Citation>Yang, Y., Wang, W., Chu, Z., Zhu, J. K., & Zhang, H. (2017). Roles of nuclear pores and Nucleo-cytoplasmic trafficking in plant stress responses. Frontiers in Plant Science, 8, 574. https://doi.org/10.3389/fpls.2017.00574</Citation>
</Reference>
<Reference>
<Citation>Yoo, S. D., Cho, Y. H., & Sheen, J. (2007). Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2(7), 1565-1572. https://doi.org/10.1038/nprot.2007.199</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Goritschnig, S., Dong, X., & Li, X. (2003). A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell, 15(11), 2636-2646. https://doi.org/10.1105/tpc.015842</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., & Li, X. (2005). A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1. Plant Cell, 17(4), 1306-1316. https://doi.org/10.1105/tpc.104.029926</Citation>
</Reference>
<Reference>
<Citation>Zhao, Q., & Meier, I. (2011). Identification and characterization of the Arabidopsis FG-repeat nucleoporin Nup62. Plant Signaling & Behavior, 6(3), 330-334. https://doi.org/10.4161/psb.6.3.13402</Citation>
</Reference>
<Reference>
<Citation>Zhu, J. Y., Oh, E., Wang, T., & Wang, Z. Y. (2016). TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nature Communications, 7, 13692. https://doi.org/10.1038/ncomms13692</Citation>
</Reference>
<Reference>
<Citation>Zhu, Y., Qian, W., & Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, 6(4), e1000844. https://doi.org/10.1371/journal.ppat.1000844</Citation>
</Reference>
<Reference>
<Citation>Zhu, Y., Wang, B., Tang, K., Hsu, C. C., Xie, S., Du, H., … Zhu, J. K. (2017). An Arabidopsis nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genetics, 13(12), e1007124. https://doi.org/10.1371/journal.pgen.1007124</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Aiqin" sort="Zhang, Aiqin" uniqKey="Zhang A" first="Aiqin" last="Zhang">Aiqin Zhang</name>
</noRegion>
<name sortKey="Pang, Qiuying" sort="Pang, Qiuying" uniqKey="Pang Q" first="Qiuying" last="Pang">Qiuying Pang</name>
<name sortKey="Wang, Shuai" sort="Wang, Shuai" uniqKey="Wang S" first="Shuai" last="Wang">Shuai Wang</name>
<name sortKey="Yan, Xiufeng" sort="Yan, Xiufeng" uniqKey="Yan X" first="Xiufeng" last="Yan">Xiufeng Yan</name>
</country>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Zhang, Aiqin" sort="Zhang, Aiqin" uniqKey="Zhang A" first="Aiqin" last="Zhang">Aiqin Zhang</name>
</region>
<name sortKey="Hua, Jian" sort="Hua, Jian" uniqKey="Hua J" first="Jian" last="Hua">Jian Hua</name>
<name sortKey="Kim, Jitae" sort="Kim, Jitae" uniqKey="Kim J" first="Jitae" last="Kim">Jitae Kim</name>
<name sortKey="Wang, Shuai" sort="Wang, Shuai" uniqKey="Wang S" first="Shuai" last="Wang">Shuai Wang</name>
<name sortKey="Yan, Jiapei" sort="Yan, Jiapei" uniqKey="Yan J" first="Jiapei" last="Yan">Jiapei Yan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000096 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000096 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32022936
   |texte=   Nuclear pore complex components have temperature-influenced roles in plant growth and immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32022936" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020